Hello, Families!

Welcome!

We’re happy to share PBS KIDS activities with you and we hope your family will use them to inspire learning each and every day.

Weekly “Learn at Home” activity packets, encourage children to view, explore, and play alongside their favorite PBS KIDS characters to help develop the skills they need for success in school and life.

Ready for more?

Watch your favorite PBS KIDS shows on WEDU, the 24/7 channel and live stream at pbskids.org/video/livetv!

Find more great learning activities at WEDU PBS At-Home Learning (wedu.org/edconnect)

Happy Learning!

WEDU PBS
PBS KIDS
<table>
<thead>
<tr>
<th>Alexander Graham Bell Biosketch</th>
<th>Make a homemade instrument from recyclable items.</th>
<th>What Can I Build?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What can you make with one foot of aluminum foil?</td>
<td>Robotic Arm Challenge</td>
<td>Use your feet to measure the length of the room you are in.</td>
</tr>
<tr>
<td>Build a Better Bunny Copter</td>
<td>Use scrap pieces of paper and make collages of buildings.</td>
<td>Secret Sequence Scrambler</td>
</tr>
</tbody>
</table>

Find more games and activities at pbs.org/parents/learn-at-home
Alexander Graham Bell helped all people talk and listen to one another.

What does deaf mean? Circle the definition.

Draw a box around three things that Alexander invented.

What is something you can do to be a good listener?

Massachusetts is in the northeast United States.

PBS KIDS and the PBS KIDS Logo are registered trademarks of Public Broadcasting Service. Used with permission. © 2020 X R 1 Productions Inc. Corporate Funding for Xavier Riddle is provided by ABCmouse.com and Kiddie Academy®.
A Caring Son
Alexander Graham Bell was born in Scotland in 1847. When he was a boy, he liked music. He also liked making things and taking them apart. Alexander loved his mother very much. She was mostly deaf. She could not hear well. Alexander would speak very close to her. She could feel the vibrations of his words. This helped her hear.

Teacher and Inventor
Alexander grew up. He moved to Boston. He was a teacher of deaf people. He wanted to help them communicate. Alexander was curious about sound. He would teach deaf students during the day. He would do experiments at night. Alexander wanted to know how to move sound on wires. His experiments led to an invention: the telephone.

Always Inventing
Alexander got married. His wife was deaf. Alexander kept studying sound. He wanted to make things to help deaf people. Alexander made many different inventions along the way. He made a wireless telephone and a metal detector. Alexander was always curious, helpful, and inventive.

Amazing Fact!
Early telephones were big! They had a part for speaking into and a separate part for listening.
Instructions: What can you build with materials like: cardboard boxes, empty paper towel rolls, a spare bed sheet, and tape? Draw and label your structure. Then, build it with recyclable materials you collect. Invite others to help you.
Build a Better Bunny Copter

In the CYBERCHASE episode, “The Fairy Borg Father,” Delete invents a Bunny Copter. How can you improve Delete’s invention so it twirls faster?

1. Color the bunny’s face.

2. Make Delete’s Invention: Starting at the top of a Bunny Copter strip, count down two boxes. Then cut (or tear) along the dotted line to the solid line at the bottom of the 2nd box to make ‘ears.’ Fold one ear forward on the solid line, and the other back as shown.

3. Make a place for Delete to ride: Fold up the bottom of your copter on the solid line. Attach Delete (a paper clip) as shown.

4. Test Delete’s Invention: Hold up the copter as high as you can and let it drop. How fast does it twirl before it hits the floor? Can you think of ways to change it so it twirls faster?

5. Build a Better Bunny Copter: Using new strips, make your changes and test new copters until your invention is as good as it can be!

How Am I Inventing?

Inventors are always looking for ways to make something work better. So, they test and make changes to an invention to improve it. When you make changes to Delete’s Bunny Copter to make it twirl faster, you’re doing the same thing. Inventors call this process refining and optimizing. You can call it fun!

Get inventive with CYBERCHASE on PBS KIDS!
For more games and activities, visit pbskidsforparents.org
Bunny Copter Strips

FOLD HERE

FOLD HERE

FOLD HERE

FOLD HERE

FOLD HERE

TEAR OR CUT HERE

TEAR OR CUT HERE

TEAR OR CUT HERE

TEAR OR CUT HERE

To be used with "Build a Better Bunny Copter"

CYBERCHASE is a production of THIRTEEN Productions LLC for WNET. ©THIRTEEN Productions LLC. All rights reserved. PBS KIDS and the PBS KIDS logo are registered trademarks of PBS. Used with permission. Major funding for CYBERCHASE is provided by the National Science Foundation, Ernst & Young LLP, Northrop Grumman Corporation, Intel Corporation, Intel Foundation, PBS and the Corporation for Public Broadcasting. Additional funding is provided by The Volckhausen Family.
Secret Sequence Scramble

Jam Sandwich Scramble Cards
Odd Squad needs YOU to help solve a secret sequence scramble! You can use sequencing cards to create a set of “how to” instructions for an activity, like brushing your teeth, planting a flower, or making your own gadget for solving oddness. Here are instructions for making a jam sandwich in seven steps. Cut out the cards and place them in the correct order. On the back of the cards, number them from 1–7. Scramble the cards, and see if you can place them in the correct order for making the sandwich.

1. Gather bread, jam, knife, and plate.
2. Lay two pieces of bread flat on plate.
3. Open jam jar.
4. Put knife in jar to get jam.
5. Spread jam on bread.
6. Close two pieces of bread to form a complete sandwich.
7. Eat sandwich.

For more games and activities, visit pbskidsforparents.org
Make-Your-Own Scramble Cards

Use the blank cards on this page to create your own ODD-some “Secret Sequence Scramble Cards.” Choose any activity. Think about the steps that are needed to complete the activity, and draw or write one step on each card. You don’t have to use all seven cards.

Cut out the cards, and place them in the correct order. Turn the cards over, and number them from 1–7. Shuffle the cards, and challenge a family member, friend, or fellow Odd Squad agent to put the cards in the correct order.
Robotic Arm Challenge

Solve an Out-of-Reach Problem with Your Own Robotic Arm

Sean loses his Neil Armstrong action figure in a deep hole, prompting the friends to create their own “robot-arm-grabber-things.” Now it’s your turn! Whether it’s retrieving a small toy under the couch or a ball too high on a shelf, robotic arms can help us grab something unreachable. Use the Engineering Design Process to create your own robotic arm!

Materials

- Printable Robotic Arm Template
- Printable Robotic Arm Instructions
- Engineering Design Process Wheel
- Empty cereal box or cardboard
- Recycled straw
- String
- Packing tape or other strong tape
- Crayons or markers
- Various household items (optional)

Create Your Robotic Arm

1. Print the Robotic Arm Template (following page). Tape the template to cardboard to use as a pattern. With an adult’s help, cut along the dashes. Use crayons or markers to decorate your robotic arm.

2. Tape the fingers to the arm and fold as directed in the Robotic Arm Instructions (following page).

3. With an adult’s help, cut 12 half-inch pieces from the straw. Tape each straw segment to the robot fingers, in-between the finger joints, as directed. Cut four 10-inch strips of string and weave them through the straws, taping the string securely at the top.

4. Attach the support strap to the robotic arm, wrap it around your hand, and secure with tape. With an adult’s help, tie the strings to your fingers so there is enough tension to pull the robotic fingers, and then put your creation to work!

Use and Improve Your Robotic Arm

1. Test your robotic arm! Find a small, light object that is out of reach. If needed, have a friend place a marshmallow or small toy in a difficult spot for you. Use your new robotic arm to help get the item.

2. The Engineering Design Process includes the step to improve. How could your paper robotic arm be even better? What if you used different materials, added more fingers or adjusted the length, for example? Make a plan and create something new and improved and then share it with your friends.

3. Define an out-of-reach problem that might need a different solution. With your friends, combine various household items—maybe kitchen tongs, a tennis racket and shoe laces, for example—to imagine, plan and create your own “robot-arm-grabber-things.” Put it to use in grabbing hard-to-reach items. Compare the cardboard robotic arm with this new creation. Which works better? Why?

For more games and activities visit pbskidsforparents.org
Robotic Arm Instructions

1. Cut out fingers, arm and support strap.

2. Tape fingers to backside of arm. Fold fingers down on fold lines.

3. Cut straw into 12 half-inch pieces.

4. Tape straw pieces between finger folds. Weave string through the straws. Secure the strings to the top of the fingers with tape.

5. Attach the support strap to the robotic arm. Wrap around your arm and secure with tape. Tie the strings around your fingers so the string has tension and moves the robotic fingers as you move.

6. Now put your robotic arm to work!
Learn at Home with PBS KIDS

Play and learn anytime and anywhere with free apps from PBS KIDS! Use the chart below to find the app that aligns to your child’s grade, learning goal, and favorite PBS KIDS show - then download it on your on your mobile or tablet device to play online, offline, or anytime.

Apps for Social & Emotional Learning

<table>
<thead>
<tr>
<th>App</th>
<th>Grade(s)</th>
<th>Learning Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Tiger for Parents</td>
<td>PK-K</td>
<td>Social & Emotional Learning</td>
</tr>
<tr>
<td>PBS KIDS Games app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
<tr>
<td>PBS KIDS Video app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
</tbody>
</table>

Apps for Literacy Learning

<table>
<thead>
<tr>
<th>App</th>
<th>Grade(s)</th>
<th>Learning Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinosaur Train A to Z</td>
<td>PK-K</td>
<td>Literacy, Science</td>
</tr>
<tr>
<td>Molly of Denali</td>
<td>K-2</td>
<td>Literacy</td>
</tr>
<tr>
<td>PBS KIDS Games app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
<tr>
<td>PBS KIDS Video app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
</tbody>
</table>

Apps for STEM Learning (Science, Technology, Engineering & Math)

<table>
<thead>
<tr>
<th>App</th>
<th>Grade(s)</th>
<th>Learning Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS Parents Play & Learn</td>
<td>PK-K</td>
<td>Literacy, Math</td>
</tr>
<tr>
<td>Play & Learn Engineering</td>
<td>PK-K</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>Play & Learn Science</td>
<td>PK-K</td>
<td>Science</td>
</tr>
<tr>
<td>Splash and Bubbles</td>
<td>PK-K</td>
<td>Science</td>
</tr>
<tr>
<td>Ocean Adventure</td>
<td>PK-K</td>
<td>Science</td>
</tr>
<tr>
<td>The Cat in the Hat Builds That!</td>
<td>PK-K</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>The Cat in the Hat Invents</td>
<td>PK-K</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>Jet's Bot Builder: Robot Games</td>
<td>K-2</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>Photo Stuff with Ruff</td>
<td>K-2</td>
<td>Science</td>
</tr>
<tr>
<td>Ready Jet Go! Space Explorer</td>
<td>K-2</td>
<td>Science</td>
</tr>
<tr>
<td>Ready Jet Go! Space Scouts</td>
<td>K-2</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>Nature Cat’s Great Outdoors</td>
<td>K-3</td>
<td>Science</td>
</tr>
<tr>
<td>PBS KIDS ScratchJr</td>
<td>1-2</td>
<td>Coding</td>
</tr>
<tr>
<td>Outdoor Family Fun with Plum</td>
<td>1-3</td>
<td>Science and Engineering</td>
</tr>
<tr>
<td>Cyberchase Shape Quest</td>
<td>1-5</td>
<td>Math, Science</td>
</tr>
<tr>
<td>PBS KIDS Games app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
<tr>
<td>PBS KIDS Video app</td>
<td>K-2</td>
<td>Multiple Learning Goals</td>
</tr>
</tbody>
</table>

pbskids.org/apps